

1 **Received Date: 2 August 2016**

2 **Revised Date: 17 April 2017**

3 **Accepted Date: 29 April 2017**

4 **Article type: Original Article**

5

6 **Title: Environmental conditions can modulate the links among oxidative stress, age, and**
7 **longevity**

8 **Authors:** Valeria Marasco^{*1}, Antoine Stier*, Winnie Boner, Kate Griffiths, Britt Heidinger²,
9 and Pat Monaghan

10 Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building,
11 University of Glasgow, Glasgow, G12 8QQ, UK.

12 Current addresses:

13 ¹Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology,
14 Vetmeduni Vienna, Savoyenstraße 1a, A-1160, Vienna, Austria.

15 ²Biological Sciences Department, Stevens Hall, North Dakota State University, Fargo, ND
16 58108, USA.

17 * Joint first authors

18 Corresponding author: Pat.Monaghan@glasgow.ac.uk

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as <http://dx.doi.org/10.1016/j.mad.2017.04.012>. This article is protected by copyright. All rights reserved.

19 **Abstract**

20 Understanding the links between environmental conditions and longevity remains a major
21 focus in biological research. We examined within-individual changes between early- and
22 mid-adulthood in the circulating levels of four oxidative stress markers linked to ageing,
23 using zebra finches (*Taeniopygia guttata*): a DNA damage product (8-hydroxy-2'-
24 deoxyguanosine; 8-OHdG), protein carbonyls (PC), non-enzymatic antioxidant capacity
25 (OXY), and superoxide dismutase activity (SOD). We further examined whether such within-
26 individual changes differed among birds living under control (*ad lib* food) or more
27 challenging environmental conditions (unpredictable food availability), having previously
28 found that the latter increased corticosterone levels when food was absent but improved
29 survival over a three year period. Our key findings were: (i) 8-OHdG and PC increased with
30 age in both environments, with a higher increase in 8-OHdG in the challenging environment;
31 (ii) SOD increased with age in the controls but not in the challenged birds, while the opposite
32 was true for OXY; (iii) control birds with high levels of 8-OHdG died at a younger age, but
33 this was not the case in challenged birds. Our data clearly show that while exposure to the
34 potentially damaging effects of oxidative stress increases with age, environmental conditions
35 can modulate the pace of this age-related change.

36

37 **Keywords:** age, longevity, environmental challenging conditions, glucocorticoids,
38 corticosterone, oxidative stress, oxidative damage, antioxidant defences.

39

40 **1. Introduction**

41 Oxidative stress is a complex, multifaceted state that arises in organisms as a consequence of
42 an imbalance between reactive oxygen species (ROS) produced primarily during aerobic
43 metabolism and the organisms' ROS quenching capacity (Halliwell and Gutteridge, 2015).
44 ROS damage macromolecules, cell components and structures, which, in the absence of
45 repair, can negatively affect performance (Martindale and Holbrook, 2002; Birben *et al.*
46 2012). The extent to which oxidative stress influences organismal health, ageing and survival
47 will depend both on the level of damage that occurs, and the investment in repair; both of
48 these will vary with species life histories, environmental circumstances and potentially also
49 with age-related changes in investment priorities, and in antioxidant and repair capabilities
50 (Finkel and Holbrook 2000; Monaghan *et al.* 2009; Salmon *et al.*, 2010; Selman *et al.* 2012;
51 Speakman and Garratt, 2014; Speakman *et al.* 2015).

52 Currently, we know relatively little about age-related changes in oxidative stress
53 within individuals, how this relates to longevity, and how levels vary with environmental
54 conditions. Population-based studies in humans have found only moderate support for a
55 positive correlation between levels of oxidative damage and age, and even less support for
56 age-related changes in antioxidant defences and repair efficiency (see Jacob *et al.* 2013 for a
57 recent review). Robust data on these issues in other vertebrate species remain rare to date
58 (e.g. Sohal *et al.* 1994, 1995; Hamilton *et al.* 2001). Most of the studies conducted so far are
59 based on cross-sectional designs (*i.e.* comparing age classes of individuals rather than within-
60 individual changes). Cross-sectional studies, however, can be confounded by differences in
61 the age of death of particular phenotypes in the study population, generally termed “selective
62 disappearance” (e.g. early mortality of poor quality individuals – Nussey *et al.* 2008;
63 Bouwhuis *et al.* 2009). This can mask the true within-individual pattern of age-related
64 variation in oxidative stress (Herborn *et al.* 2015). Though not always possible for a variety

65 of reasons, repeated sampling of the same individual through time is essential to examine
66 age-related changes in oxidative stress levels. To date only a few studies in the laboratory
67 (Matsuo *et al.* 1993; Alonso-Alvarez *et al.* 2006) and in the wild (Bize *et al.* 2014; Herborn *et*
68 *al.* 2015) have used such longitudinal sampling designs. These within-individual studies do
69 find that selective disappearance of individuals with high oxidative stress levels does occur
70 (Herborn *et al.* 2015), but generally also find evidence of age-related increases in oxidative
71 stress exposure or age-related decreases in cell resistance to oxidative stress (Matsuo *et al.*
72 1993; Bize *et al.* 2014).

73 The quality of the environment might influence both oxidative stress levels at a given
74 age and age-related change in oxidative stress levels. The undemanding conditions that
75 animals generally experience in the laboratory might give rise to very low levels of oxidative
76 stress, whereas these levels might be altered and more variable in more challenging
77 environments (Salmon *et al.* 2010). For example, a recent study in captive black birds
78 showed that individuals exposed to repeated immune and disturbance stressors exhibited
79 higher levels of oxidative damage markers than control birds after one year of treatment (Hau
80 *et al.* 2015). Elevated levels of stress hormones (i.e. glucocorticoids), generally induced by
81 exposure to challenging and unpredictable environmental circumstances (Wingfield and
82 Kitaysky, 2002), have been associated with elevated levels of oxidative damage in
83 vertebrates, as shown in a comprehensive meta-analysis (Costantini *et al.* 2011). However,
84 the effects of environmental conditions on oxidative stress might vary depending on the
85 magnitude and type of environmental challenge.

86 The aims of this study were 1) to examine within individual changes in oxidative
87 stress from early- to mid-adulthood; 2) to examine whether challenging environmental
88 conditions influenced oxidative stress levels and/or age-related changes in oxidative stress
89 levels, and 3) to examine whether oxidative stress levels were predictive of survival
This article is protected by copyright. All rights reserved.

90 probability and whether such relationships were altered under more challenging
91 environmental conditions. We used captive zebra finches (*Taeniopygia guttata*) as our study
92 species. We manipulated the quality of the environment by exposing experimental birds to
93 unpredictable episodes of food withdrawal throughout adulthood (see full details in Marasco
94 *et al.* 2015). In this species, we have previously reported that such challenging environment
95 moderately increased baseline levels of glucocorticoid stress hormone without overall
96 affecting body mass (Marasco *et al.* 2015), leading more surprisingly to improved probability
97 of survival to the age of at least three years (Marasco *et al.* 2015). In this paper, we examine
98 four different markers of oxidative stress in a randomly chosen subset of birds from the
99 experimental population used in Marasco *et al.* (2015): a DNA damage product (8-hydroxy-
100 2'-deoxyguanosine, 8-OHdG), oxidative damage to protein (protein carbonyls), non-
101 enzymatic antioxidant capacity (OXY), and superoxide dismutase (SOD) enzymatic
102 antioxidant activity at two age points (early- and mid-adulthood).

103 We predicted: 1) that exposure to oxidative stress would increase with age (e.g. Finkel
104 and Holbrook, 2000); 2) that the birds exposed to the challenging environmental protocol
105 would show reduced oxidative damage given our previous finding of their improved survival
106 (Marasco *et al.* 2015), and 3) that individuals showing higher levels of oxidative damage
107 would have shorter lifespans irrespective of the treatment.

108

109 **2. Material and Methods**

110 **2.1 Experimental design**

111 This study was performed on a subset of female zebra finches (*Taeniopygia guttata*)
112 randomly selected from the larger study investigating the long-term effects for mothers (F0),
113 and subsequent generations, of exposure of the F0 generation to challenging environmental

114 conditions mentioned above. Since the main focus of this long-term transgenerational project
115 was on maternal effects, only females were subjected to the treatments. The birds were
116 maintained throughout the experiment at a photoperiod of 14h:10h light:dark cycle and the
117 temperature was maintained between 20-24°C. The environmental manipulations started
118 when the F0 females were approximately 5 months old (mean \pm SEM: 156 \pm 1 day old). At
119 this stage, they were fully grown, young adults as sexual maturation is reached by 2.5-3
120 months of age in the zebra finch (Zann, 1996). From the start of the experiment, females were
121 housed in treatment-specific groups in cages (n = 7-10 per 120 x 50 x 50 cm cage), and
122 randomly assigned to one of two experimental groups: challenging (n = 74) or control (n =
123 65) environments. Where possible, females that hatched in the same nest were
124 counterbalanced between the two treatment groups and family of origin was taken into
125 account in all analyses.

126 Females in the challenging environment were denied access to food for a continuous
127 period of almost one third of the daylight hours (4.9h a day), 4 days per week on a random
128 schedule. For the remaining two thirds of the daylight hours, and on the non-treatment days,
129 food was provided *ad libitum*. Access to food in the challenging environment was prevented
130 by placing a textured paper sheet (globular embossed sheets, 180 GSM, 575MM X 485MM -
131 DBM Scotland Ltd) at the bottom of the cages in order to assure full coverage of the food
132 bowls and of any seed food scattered on the floor cage. The floor tray had to be briefly
133 removed from the cage in order to place and to remove the paper sheet. Both control and
134 experimental birds were equally spread in two experimental rooms, meaning that both groups
135 were exposed to the same level of disturbance resulting from experimenters entering the
136 rooms. The removal of the floor tray was a routinely conducted procedure during cage
137 cleaning in both experimental groups.

138 Birds in the challenging environment were always kept on this food regime other than
139 when breeding (three breeding events at 188 ± 1 , 408 ± 1 days, and 653 ± 1 days of age,
140 means \pm SEM for all) when they received *ad libitum* food continuously for approximately 2
141 months. Birds in the control environment were always provided with *ad libitum* food and
142 experienced exactly the same breeding regime as in the challenging environment. We have
143 previously shown that the treatment had no significant overall effects on body mass,
144 measured up to three years of age, confirming that the random withdrawal of food altered
145 primarily the temporal predictability of resources rather than the daily overall food intake
146 (full details in Marasco *et al.* 2015). Importantly, our environmental manipulation induced
147 changes in the exposure to glucocorticoid stress hormones. We found that at the end of the
148 episodes of food withdrawal the challenged birds showed higher baseline corticosterone (the
149 main avian glucocorticoid) than those in the control conditions (on average 1.4 fold increase),
150 and there was no sign of habituation of this hormonal response over time (full details in
151 Marasco *et al.* 2015). Therefore, our environmental manipulation mimicked a mild/moderate
152 environmental challenge experienced by animals living in unstable environments, such as
153 those with unpredictable foraging conditions. The birds living in these more challenging
154 conditions showed increased probability of survival relative to those in the control conditions
155 based on monitoring to three years of age (treatment: $\exp(\beta) \pm \text{SE}(\beta) = 0.53 \pm 0.26$, $z = -$
156 2.42 , $p = 0.016$ - Mixed Effects Cox Models; Marasco *et al.* 2015). The positive
157 consequences of the treatment on survival emerged progressively starting from the age of
158 about one year as mortality prior to this point (up to 379 days) was very low in the birds
159 living in both environmental conditions (3.6% controls and 1.8% challenging - Marasco *et al.*
160 2015). Thus, the data on oxidative stress markers are not biased by mortality of individuals
161 exhibiting a particular phenotype prior to the one year sampling. Since we had full details on
162 the longevity and survival of individual birds living in both environments until three years of

163 life (Marasco *et al.* 2015), we examined whether markers of oxidative stress (full details
164 below) predicted longevity. In this and other studies, differences in age-specific survival
165 patterns are detectable in the zebra finch within this time frame (Monaghan *et al.* 2012;
166 Costantini *et al.* 2014; Marasco *et al.* 2015). The work was carried out under Home Office
167 Project Licence 60/4109.

168

169 **2.2 Sampling and laboratory analysis**

170 Since we were studying the longevity of the individuals, minimally invasive
171 techniques were used to obtain the required biological samples. In this context, blood
172 sampling offers a good opportunity to gather data on oxidative stress markers in a minimally
173 invasive manner, using either plasma or red blood cells (Stier *et al.* 2015). Levels of oxidative
174 stress in the blood have been shown for instance to correlate to those of organs such as heart,
175 muscle or liver, depending on the biomarker used (Veskoukis *et al.* 2009). Blood oxidative
176 stress markers are also known to exhibit similar responses as other organs to manipulations
177 known to induce oxidative stress such as intense physical exercise, exposure to stress
178 hormones, or acute cold exposure (Pereira *et al.* 2013; Marasco *et al.* 2013; Stier *et al.* 2014a,
179 b).

180 Small blood samples (up to 140 µl) were taken by venipuncture from the brachial vein
181 prior to the start of the experiment when the birds were 5 months old, and again when the
182 birds were approximately 1 year of age (i.e. mean ± SEM: 380 ± 1 days of age). These birds
183 were therefore in young and mid-adulthood. In the zebra finch, signs of senescence appear
184 from about 2 years of life when the risk of death starts increasing (Monaghan *et al.* 2012;
185 Marasco *et al.* 2015). It was not our intention to examine long-term changes in the oxidative
186 stress markers, but rather to examine how they were influenced by environmental conditions

187 and whether they were predictive of survival over a three year period. All females were in a
188 non-reproductive state at the time of sampling, and over the three year period were allowed to
189 breed at the same age points as reported above. The samples were kept on ice for less than
190 4hrs before being centrifuged (at 4°C) to separate plasma from red blood cells, and stored at -
191 80 °C until laboratory analyses. We measured two commonly used oxidative stress markers,
192 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the plasma and protein carbonyls (PC) levels in
193 red blood cells. Additionally, we measured two markers of antioxidant defences in the
194 plasma, the non-enzymatic antioxidant capacity (OXY) and the activity of the superoxide
195 dismutase (SOD) enzyme. 8-OHdG is one of the predominant forms of free radical-induced
196 oxidative lesions on DNA. At the cellular level, damaged guanine (8-OHdG) can be excised
197 from genomic DNA by specific repair enzymes, and enters the circulation before being
198 eliminated through urine. Consequently, plasma and urinary levels of this marker reflect
199 whole-body oxidative stress status, and will be influenced both by the level of damage and by
200 the rate of repair of such damage (Halliwell and Gutteridge, 2015). Carbonyl groups are
201 introduced into the proteins from free radicals or via reactions with lipid peroxidation
202 products or carbohydrates; damage produced by protein carbonylation cannot be repaired
203 and, therefore, measurements of protein carbonyls (PC) provide a reliable estimate of
204 terminal damage products (Halliwell and Gutteridge, 2015). Measurements of non-enzymatic
205 antioxidants (e.g. vitamins, carotenoids, flavonoids and thiols) in biological tissues provide
206 an indication of the ability of the sample to buffer/counteract oxidants, thus providing an
207 integrated proxy of measurable non-enzymatic antioxidant capacity (OXY). Superoxide
208 dismutase (SOD) is involved in the first step of the antioxidant enzymatic cascade catalysing
209 the dismutation of superoxide radical into oxygen and hydrogen peroxide. The SOD family
210 contain 3 specific isoforms: SOD1 being found in the cytoplasm, SOD2 being targeted to the
211 mitochondria, and SOD3 being actively excreted from the cells to act as an extra-cellular

212 antioxidant (Zelko *et al.* 2002). The four markers were measured using commercial kits
213 following the manufacturers' instructions, using a MultiSkan® Spectrum microplate-reader
214 (Thermo Scientific, USA). The same individual birds were sampled at both 5 months and 1
215 year of age; due to low blood volume for some birds, we were unable to measure all four
216 oxidative stress markers at 5 months and/or 1 year of age in all collected samples – full
217 details on sample sizes for each oxidative stress marker/age are shown in Table S1
218 (Supplementary Material).

219 We measured the circulating concentration of 8-OHdG using a competitive
220 immunoassay (plasma diluted 1:8, OD measurement at 450nm, Assay Designs DNA damage
221 ELISA Kit – Enzo® Life Sciences, USA). DNA damage is expressed as ng of 8-OHdG/mL,
222 and intra-plate variation based on duplicate samples was low ($CV = 7.91 \pm 0.51\%$) as well as
223 inter-plate variation based on a standard sample repeated over plates ($CV = 4.83\%$).

224 The carbonyl content of red blood cell lysate was quantified using the protein
225 carbonyl ELISA kit (red blood cells diluted 1:6, OD measurement at 450nm, Enzo® Life
226 Sciences, USA). PC content is expressed as nmol/mg of protein, and intra-plate variation
227 based on duplicate samples was low ($CV = 5.98 \pm 0.47\%$) as well as inter-plate variation
228 based on a standard sample repeated over plates ($CV = 8.92\%$).

229 Plasma non-enzymatic antioxidant capacity was measured with the OXY-Adsorbent
230 test (Diacron International, s.r.l, Italy) using 5 μ L of 1:100 diluted plasma (OD measurement
231 at 510nm). The OXY adsorbent test quantifies the ability of the plasma antioxidant
232 compounds to buffer a massive oxidation through hypochlorous acid. This assay measures a
233 variety of non-enzymatic antioxidants, including vitamins, carotenoids, flavonoids and thiols
234 (OXY significantly correlate with thiols in the blood: $r = 0.65\text{--}0.67$, Palleschi *et al.* 2007).
235 Antioxidant capacity is expressed as mM of HClO neutralised. Intra-plate variation based on

236 duplicate samples was $4.25 \pm 0.30\%$; inter-plate coefficient of variation based on a standard
237 sample repeated over plates was 3.62%.

238 The enzymatic activity of SOD in the plasma (predominantly SOD3 variant) was
239 measured using the SOD activity kit (Enzo® Life Sciences, USA) using 25 μL of 1:8 diluted
240 plasma, following manufacturer instructions (OD measurement at 450nm). This test
241 quantifies in vitro the kinetics of inhibition in superoxide formation resulting from SOD
242 antioxidant activity. SOD activity is expressed as units of enzymatic activity (U). Intra-plate
243 variation based on duplicate samples was $8.34 \pm 0.55\%$; inter-plate coefficient of variation
244 based on a standard sample repeated over plates was 8.90%.

245

246 **2.3 Data Analysis**

247 We first tested the impact of age and treatment on oxidative stress markers using
248 repeated linear mixed models (SPSS v20.0). We included age (i.e. 5 month *vs.* 1 year),
249 treatment (control *vs.* challenging environment) and their interaction as fixed factors. We
250 included bird identity as the repeated subject and bird family as a random effect. We also
251 included body mass as a covariate, and checked for potential interactions between body mass
252 and treatment. We sequentially removed non-significant terms ($p > 0.05$) from the final
253 models, starting with the interactions. In preliminary exploratory analyses we considered
254 approaches to reduce data dimensionality and therefore multiple testing. However, co-
255 variation among the oxidative stress markers was very low for both the 5 months and 1 year
256 measurements ($-0.03 < \text{Pearson } r < 0.28$) and Principal Component Analysis failed to
257 effectively reduce data dimensionality (% of variance explained by the first 2 Principal
258 Components was relatively low, respectively 32% and 28%).

259 Next, we performed analyses to test whether variation in the oxidative stress markers
260 predicted survival (measured from one to three years of age; only one control bird in the
261 subset of birds used in this study died of natural causes during the first year of life and this
262 was excluded from the survival analyses) and/or explain variation in the age at which death
263 occurred within the pool of females that died. In these analyses, we only included birds that
264 died naturally, or were culled on welfare grounds after veterinary assessment verified that
265 their death was imminent due to intrinsic causes rather than accidental death (2 control birds
266 and 1 bird in the challenging environment were excluded from survival analyses for this
267 reason). We tested the relationships between survival (binary data (0/1)), oxidative stress, and
268 treatment using Generalized Linear/Mixed Models (GLMs/GLMMs) with a binomial error
269 structure and logit function in R (R 3.1.3, Rcore team, 2014 - package “lme4”, Bates *et al.*
270 2015). We performed separate binomial models for each marker (*i.e.* 8-OHdG; PC; OXY, or
271 SOD) to test whether the 1 year measurements (~224 days after the start of the challenging
272 treatment), predicted survival over the next two years of life, and to test if oxidative stress
273 influenced probability of survival differently in the two treatment groups. In addition, we
274 performed General Linear Models (LMs) to investigate whether oxidative stress marker
275 measurements (at 1 year) explained a significant amount of the variation in the age at death,
276 using the 34 birds that had died between 1 and 3 years of age (18 out of 62 individuals in the
277 control environment, 29.03%; 16 out of 73 individuals in the challenging environment,
278 21.92%). Fixed factors entered in both GLMs/GLMMs and LMs models were: treatment
279 (control vs. challenging), oxidative stress marker at 1 year (*i.e.* 8-OHdG; PC; OXY, or SOD)
280 and their interaction; when possible, family id was entered as random factor. In preliminary
281 analyses we included body mass (at 1 year) as a covariate in each model performed and we
282 considered the two way- and three-way interactions of body mass with treatment and the
283 oxidative stress marker. Body mass and the interactions tested were either not significant or

284 could not be ascertained due to poor model performance. Consequently, we removed body
285 mass from the final survival models since it never improved explanatory power. Model fit of
286 the survival binomial models was evaluated via graphical check of the binned plot residuals
287 versus the fitted values (Zuur *et al.* 2009). We also tested the “delta” oxidative stress markers
288 (i.e. change between 5 months and 1 year corrected for the regression to the mean effect
289 following Kelly and Price, 2005 – see details in Supplementary Material) as explanatory
290 factors instead of the actual oxidative stress levels at 1 year of age. These analyses are
291 reported in Supplementary Material for clarity.

292 We chose to perform separate models for each marker (using the 1 year
293 measurements, or the delta marker index values) to maximise statistical power as we were
294 unable to measure all four oxidative markers in all the collected samples as reported above
295 (full details in Table S1). Nevertheless, the same significant patterns were obtained with
296 inclusion of all four oxidative stress markers, together with the interactions of each marker
297 with the treatment, when performing two separate binomial models (one using the 1 year
298 measurements, and the other one using the delta marker index values; variance inflation
299 factors among the covariates were ≤ 1.1 for both models) (data not shown). This model
300 strategy was not achievable for the model testing age at death due to the relatively limited
301 sample size.

302 Unless otherwise specified values are reported as mean \pm SEM with p -values ≤ 0.05
303 being considered as significant, and the analyses were performed using the software SPSS
304 v20.0. We reported effect size for significant factors, in order to provide an evaluation of the
305 magnitude of the biological effect of interest according to recommendations of Nakagawa
306 and Cuthill (2007). We used two kinds of effect size measures depending on the statistical
307 model used. We used g_{Hedges} (Hedges and Olkin, 1985) for the models testing age and
308 treatment effects, and for the binomial survival models; we refer to small (0.2), moderate
This article is protected by copyright. All rights reserved.

309 (0.5) and large (0.8) effects according the widely used nomenclature (Nakagawa and Cuthill,
310 2007; Cohen 1988). We used partial eta-squared for the models testing age at death, and refer
311 to small (0.01), moderate (0.06) and large (0.14) effects (Cohen 1988).

312

313 **3. Results**

314 **3.1 Effect of age and environmental conditions on oxidative stress markers**

315 We found a significant increase with age both for 8-OHdG ($p < 0.001$, $g_{\text{Hedges}} = 0.73$
316 (moderate), Table S2a, Figure 1a) and PC ($p < 0.001$, $g_{\text{Hedges}} = 0.47$ (moderate), Table S2b,
317 Figure 1b). The age-related change in plasma 8-OHdG levels was influenced by
318 environmental circumstances (treatment x age interaction: $p = 0.004$, $g_{\text{Hedges}} = 0.59$
319 (moderate), Table S2a). 8-OHdG levels increased with age in both groups, but the age-related
320 increase was greater in the birds living under challenging environmental conditions (Figure
321 1a). In contrast, we found no significant effect of the environmental circumstances on protein
322 damage levels or on its age-related increase (Table S2b, Figure 1b).

323 The two markers of antioxidant defences did not show a consistent age-related
324 pattern. Plasma non-enzymatic antioxidant defences (OXY) was significantly influenced by
325 the interaction between environmental circumstances and age ($p = 0.042$, $g_{\text{Hedges}} = 0.47$
326 (moderate), Table S2c). Birds facing the challenging environmental conditions did not
327 significantly differ from those in the control environment before the start of the experiment,
328 but ended up with significantly higher OXY levels (Figure 1c). SOD levels were influenced
329 by age and environmental conditions as revealed by the significant interaction between
330 experimental treatment and age ($p = 0.020$, $g_{\text{Hedges}} = 0.48$ (moderate), Table S2d), but the
331 pattern was the opposite of that observed for OXY (Figure 1d). SOD activity of control birds

332 significantly increased with age, while it was not the case for birds facing the challenging
333 environmental conditions.

334

335 **3.2 Oxidative stress, environmental conditions and probability of survival**

336 At 1 year of age, neither plasma 8-OHdG nor red blood cell PC levels significantly predicted
337 the proportion of birds surviving to at least three years old in either environment (Table S3a,
338 b). While there was no significant interaction between environmental conditions and OXY at
339 1 year in predicting probability of survival up to three years of age (Table S3c), we found that
340 SOD levels at 1 year predicted survival in an environment-specific fashion ($p = 0.03$; Table
341 S3d). The magnitude of this interaction effect was overall weak: birds in the control
342 conditions showed a higher probability of death as SOD activity increased, while the opposite
343 trend was observed in the challenging conditions (Figure 2; control alive: 4.203 ± 0.157 ,
344 control dead: 4.687 ± 0.300 , $g_{\text{Hedges}} = 0.44$ (small); challenging environment alive: $4.220 \pm$
345 0.177 , challenging environment dead: 3.603 ± 0.265 , $g_{\text{Hedges}} = 0.49$ (moderate)). Analysing
346 our data using the age-related change in oxidative stress instead of the 1 year values yielded
347 similar results (see supplementary Table S5), except for a marginally significant trend for
348 delta PC index to predict mortality across both treatment groups ($p = 0.06$; $g_{\text{Hedges}} = 0.51$
349 (moderate)). Birds showing higher age-related increases in PC were more likely to die (delta
350 PC index: alive birds: -0.005 ± 0.004 ; dead birds, 0.013 ± 0.010).

351

352 **3.3 Oxidative stress, environmental conditions and age of death**

353 We found evidence of a different relationship between 8-OHdG levels at 1 year and age of
354 death in the different environments (interaction: $p = 0.004$, partial eta-squared = 0.25 (large);
355 full model output in Table S4a). Birds living in the control conditions that died young had

356 relatively high 8-OHdG levels ($r = -0.63, p = 0.005$; Figure 3), whilst there was no such
357 relationship in the birds living under more challenging environmental conditions ($r = 0.30, p$
358 = 0.27; Figure 3). Neither PC, OXY, nor SOD levels at 1 year explained variation in the age
359 of death in either environment (Table S4b-d). Analysing our data using the age-related
360 change in oxidative stress instead of the 1 year value yielded similar results (see
361 supplementary Table S6).

362

363 **4. Discussion**

364 The results from our longitudinal study clearly show that exposure to oxidative stress
365 increases with age, and that environmental conditions can modulate the links among
366 oxidative stress, age, and longevity. Specifically, we found that: (1) oxidative stress increases
367 from early- to mid-adulthood in zebra finch females since we found an age-related increase in
368 both plasma 8-OHdG and red blood cells protein carbonyls; (2) the age-related increase in
369 plasma 8-OHdG was greater in the birds maintained under the more environmentally
370 challenging conditions (unpredictable food availability compared with *ad lib* food); (3) age-
371 related changes in antioxidant defences were influenced by environmental conditions since
372 enzymatic defences (SOD) increased with age in the control but not in the challenging
373 environment, while the opposite was true for non-enzymatic antioxidant levels; (4) levels of
374 8-OHdG at 1 year were not predictive of probability of survival up to three years of age in
375 either environment, but were negatively related to the age of death in the control environment
376 only; (5) a higher age-related increase in protein oxidative damage was moderately linked to
377 lower survival probability, irrespective of environmental conditions; (6) SOD levels at one
378 year were predictive of survival, but in opposite directions between control (negative) and
379 challenging (positive) environments.

380 Focusing first on the effect of age *per se* in the birds living in the control
381 environmental conditions throughout the experiment, we found an intra-individual increase in
382 plasma 8-OHdG levels and red blood cells protein damage, but also an increase in plasma
383 SOD activity. This increase in oxidative stress indicators with age is overall in line with our
384 first prediction (i.e. that exposure to oxidative stress would increase with age). Plasma non-
385 enzymatic antioxidant capacity did not change with age, but this is probably not surprising
386 under *ad libitum* food in laboratory conditions, since this marker is influenced at least to
387 some extent by the dietary intake of antioxidants (Cohen *et al.* 2007). Our results suggest
388 unambiguously that exposure to oxidative stress increases with age from quite early in adult
389 life, since our oxidative stress measurements covered the early- to mid-adulthood of the birds
390 (i.e. from 5 months to 1 year). The results of our longitudinal study are in accordance with a
391 meta-analysis based on cross-sectional studies in rodents which showed an overall age-
392 related increase in oxidative damage to DNA in these species (Møller *et al.* 2010). Our
393 marker of DNA damage in the plasma (8-OHdG) might reflect both damage and repair
394 capacity. However, given that protein damage levels in the plasma also increased with age in
395 our birds, this suggests that the age-related increase in 8-OHdG reflects an age-related
396 increase in oxidative damage to DNA. Recent cross-sectional studies in humans on this topic
397 are equivocal since one study showed an age-related increase in both DNA damage and repair
398 (Soares *et al.* 2015), while another showed an age-related decrease in DNA repair capacity
399 (Løhr *et al.* 2015). Such mixed results emphasise the need for comprehensive longitudinal
400 studies investigating age-related changes in both DNA damage and repair capacities.
401 Interestingly, our results are somewhat in contrast with recent findings in wild European
402 Shags (*Phalacrocorax aristotelis*), a relatively long-lived bird species. In this species, an
403 increase in oxidative stress exposure, was only evident at old age (Herborn *et al.* 2015). Such
404 inter-specific differences might arise as a consequence of life-history related differences in

405 the pattern of investment in somatic tissue defences. Our zebra finch results suggest that the
406 age-related increase in 8-OHdG and protein carbonyls levels is probably more linked to an
407 increase in ROS production than a defect in endogenous protective mechanisms, since we
408 found an up-regulation of plasma SOD antioxidant activity with age. The only study available
409 to date on age-related changes in ROS production in birds found no evidence for an increase
410 in ROS production using a cross-sectional approach (Stier *et al.* 2015). However, as
411 mentioned already, such approach is likely to be biased by the reduced survival of individuals
412 exhibiting high ROS production during early life, giving the erroneous impression that that
413 ROS production does not change with age.

414 We showed that living in a challenging environment was associated with marked
415 alterations in an individual's oxidative status (i.e. significant interaction between treatment
416 and age for 3 markers out of 4). While our challenging environmental conditions did not
417 affect protein carbonyl levels in the red blood cells, 8-OHdG levels in the plasma increased
418 more with age in the birds living in the challenging environment. Moreover, birds exposed to
419 the challenging conditions showed reversed within-individual changes in the antioxidant
420 markers (OXY and SOD) relatively to the control birds. Interpretation of the latter results is
421 not straightforward, but the pattern we found might be related to environmentally-induced
422 differences in the balance between endogenously produced (e.g. SOD) and dietary
423 antioxidants. The elevation in plasma 8-OHdG levels is not in accordance to our second
424 prediction (i.e. that the birds exposed to the challenging environmental protocol would show
425 reduced oxidative damage given our previous finding of their improved survival), but we
426 have to keep in mind that such elevated 8-OHdG levels might reflect both an increase in
427 DNA damage and/or repair. Interestingly, the challenging environment was able to break the
428 negative relationship observed between 8-OHdG and the age of death in the control
429 environment. This is of particular interest given that the birds exposed to the challenging

430 environment did on average show increased life expectancy relative to those in the control
431 environment (Marasco *et al.* 2015). Together, our results suggest that birds living in the
432 challenging environment were likely to be more resistant to oxidative stress. In support of
433 this, a variety of mild stressors, generally producing moderate increases in exposure to
434 glucocorticoids as in our study, can extend lifespan via activating various cellular stress
435 response pathways (Fontana and Partridge, 2015), including those implicated in increasing
436 organismal ability to repair oxidatively damaged DNA (Guo *et al.* 1998; Cabelof *et al.* 2003).
437 This idea would also be in agreement with experimental evidence showing that the effects of
438 environmental stressors generally follow an inverted-U dose-response curve as a function of
439 stress severity, with mild-moderate stressors being salutary and more severe stressors
440 procuring negative fitness effects (recently reviewed by Sapolsky, 2015). The beneficial
441 effects of our challenging environment on the survival up to three years (Marasco *et al.* 2015)
442 and the lack of difference in protein oxidative damage between the treatment groups further
443 support the idea that living under challenging environmental conditions might have activated
444 adaptive transcriptional and post-transcriptional responses that altered ROS-dependent
445 signalling state rather than oxidative damage per se (Holmstrom and Finkel, 2014).

446 There was suggestion from our analyses that the chances of survival were marginally
447 reduced in the birds showing high within-individual increases in red blood cell protein
448 carbonyls with age, irrespective of their environment. Although being only marginally
449 significant, this result gives limited support to our third prediction (i.e. that individuals
450 showing higher levels of oxidative damage would have shorter lifespans irrespective of the
451 treatment) given that protein carbonylation is unequivocally a marker of damage. The
452 weakness of the effect suggests that the age-related increase in oxidative damage to proteins
453 that had occurred by one year of age, and irrespective of environmental quality, was not
454 sufficiently detrimental to account for much of the variation in subsequent survival. Our data

455 are not surprising considering the mixed findings in the literature about the ability of known
456 markers of oxidative damage to predict survival prospects. For example, studies in mice
457 genetically modified to increase exposure to ROS via altering specific antioxidants, generally
458 showed no effect on the probability of survival, but rather contributed to the progression of
459 diseases (Salmon *et al.* 2010). The recent growing body of work in un-manipulated
460 individuals primarily carried out in free-living bird populations has also shown mixed results
461 (reviewed in Costantini, 2014), with some studies supporting the idea of negative association
462 among markers of oxidative damage and survival (Freeman-Gallant *et al.* 2011; Noguera *et*
463 *al.* 2012; Costantini and Dell’Omo, 2015; Herborn *et al.* 2015), and others reporting no
464 association (Beaulieu *et al.* 2011; Stier *et al.* 2014c; Costantini *et al.* 2015). The variable
465 outcomes may be due to several factors, including species-specific patterns, differences in
466 life-stages between individuals (e.g. breeding *vs.* non-breeding animals), age differences, or
467 other confounding environmental factors, and differences relating to the measures of
468 oxidative damage. Our longitudinal study was conducted under controlled environmental
469 conditions, hence removing some of these potentially confounding factors. More direct
470 manipulations of ROS exposure are needed in order to fully understand the links between
471 oxidative damage and longevity.

472 In conclusion, oxidative stress exposure, indicated by circulating levels of 8-OHdG
473 and protein carbonyls, does increase with chronological age and this process is likely to start
474 at least from early/mid adulthood. Such an increase in oxidative stress levels was probably
475 associated with an increase in ROS production rather than an age-related deterioration in
476 antioxidant defences. Our study also showed that the protracted exposure to an environmental
477 challenge led to higher increases in levels of 8-OHdG in the plasma, but this specific point
478 deserves further investigation to tease apart the relative contribution of oxidative damage *per*
479 *se* and of DNA repair capacity. We showed that elevated plasma levels of 8-OHdG were not

480 linked to survival or longevity under challenging environmental conditions, contrary to what
481 was observed in the control environmental conditions in which high 8-OHdG levels were
482 negatively correlated to the age of death. Given the beneficial effects of our challenging
483 environmental conditions on survival in our study population (Marasco *et al.* 2015), it
484 appears that such challenging environment promoted to some extent resistance to oxidative
485 stress, perhaps through activating repair capabilities – this idea remains to be experimentally
486 validated. As a final comment, we propose that future studies exposing individuals to
487 different degrees of environmental challenge will be extremely useful in elucidating potential
488 non-linear relationships between environmentally-mediated oxidative stress and its associated
489 costs and benefits at the organismal level.

490

491 **5. Acknowledgments**

492 We thank G. Adams, G. Anderson, A. Kirk, J. Laurie, G. Law, and G. Grey for excellent
493 assistance with animal husbandry. This work was funded by a European Research Council
494 Advanced Investigator Award (268926) to PM. AS and VM were individually supported by
495 Marie Skłodowska-Curie Postdoctoral Fellowships at the time of writing (AS: #658085; VM:
496 #704582).

497

498 **6. References**

499 Alonso-Alvarez, C., Bertrand, S., Devevey, G., Prost, J., Faivre, B., Chastel, O., Sorci, G,
500 2006. An experimental manipulation of life-history trajectories and resistance to
501 oxidative stress. *Evol.* 60(9), 1913-1924.

502 Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting Linear Mixed-Effects Models
503 Using lme4. *Journal of Statistical Software* 67, issue 1.

504 Beaulieu, M.L., Reichert, S., Le Maho, Y., Ancel, A., Criscuolo, F., 2011. Oxidative status
505 and telomere length in a long-lived bird facing a costly reproductive event. *Funct.*
506 *Ecol.* 25, 577-585.

507 Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., Kalayci, O., 2012. Oxidative Stress and
508 Antioxidant Defense. *World Allergy Organ J* 5, 9-19.

509 Bize, P., Cotting, S., Devevey, G., van Rooyen, J., Lalubin, F., Glaizot, O., Christe, P., 2014.
510 Senescence in cell oxidative status in two bird species with contrasting life
511 expectancy. *Oecologia* 174, 1097-1105.

512 Bouwhuis, S., Sheldon, B.C., Verhulst, S., Charmantier, A., 2009. Great tits growing old:
513 selective disappearance and the partitioning of senescence to stages within the
514 breeding cycle. *Proceedings of the Royal Society of London B: Biological Sciences*
515 276, 2769-2777.

516 Cabelof, D.C., Yanamadala, S., Raffoul, J.J., Guo, Z., Soofi, A., Heydari, A.R., 2003. Caloric
517 restriction promotes genomic stability by induction of base excision repair and
518 reversal of its age-related decline. *DNA Repair* 2, 295-307.

519 Cohen, J., 1988. *Statistical Power Analysis for the Behavioral Sciences*. 2nd edn. Hillsdale,
520 New Jersey: L.

521 Cohen, A., Klasing, K., Ricklefs, R., 2007. Measuring circulating antioxidants in wild birds.
522 Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular
523 Biology 147, 110-121.

524 Costantini, D., Marasco, V., Møller, A., 2011. A meta-analysis of glucocorticoids as
525 modulators of oxidative stress in vertebrates. *J. Comp. Physiol. B* 181, 447-456.

526 Costantini, D., 2014. Integrating Oxidative Stress and Hormesis into Research on Senescence
527 and Survival Perspectives. *Oxidative Stress and Hormesis in Evolutionary Ecology*
528 and Physiology

Springer Berlin Heidelberg, pp. 305-342.

529 Costantini, D., Monaghan, P., Metcalfe, N.B., 2014. Prior hormetic priming is costly under
530 environmental mismatch. *Biology Letters* 10.

531 Costantini, D., Dell'Omo, G., 2015. Oxidative stress predicts long-term resight probability
532 and reproductive success in Scopoli's shearwater (*Calonectris diomedea*).
533 *Conservation Physiology* 3.

534 Costantini, D., Goutte, A., Barbraud, C., Faivre, B., Sorci, G., Weimerskirch, H., Delord, K.,
535 Chastel, O., 2015. Demographic Responses to Oxidative Stress and Inflammation in
536 the Wandering Albatross (*Diomedea exulans*). *Plos One* 10, e0133967.

537 Finkel, T., Holbrook, N.J., 2000. Oxidants, oxidative stress and the biology of ageing. *Nature*
538 408, 239-247.

539 Fontana, L., Partridge, L., 2015. Promoting Health and Longevity through Diet: From Model
540 Organisms to Humans. *Cell* 161, 106-118.

541 Freeman-Gallant, C.R., Amidon, J., Berdy, B., Wein, S., Taff, C.C., Haussmann, M.F., 2011.
542 Oxidative damage to DNA related to survivorship and carotenoid-based sexual
543 ornamentation in the common yellowthroat. *Biology Letters* 7, 429-432.

544 Guo, Z., Heydari, A., Richardson, A., 1998. Nucleotide Excision Repair of Actively
545 Transcribed Versus Nontranscribed DNA in Rat Hepatocytes: Effect of Age and
546 Dietary Restriction. *Experimental Cell Research* 245, 228-238.

547 Halliwell, B.H., Gutteridge, J.M.C., 2015. Free radicals in biology and medicine. Fifth
548 Edition, Oxford University Press, Oxford, UK.

549 Hamilton, M.L., Van Remmen, H., Drake, J.A., Yang, H., Guo, Z.M., Kewitt, K., Walter,
550 C.A., Richardson, A., 2001. Does oxidative damage to DNA increase with age? *Proc.*
551 *Natl. Acad. Sci. U S A* 98, 10469-10474.

552 Holmström, K.M., Finkel, T. 2014. Cellular mechanisms and physiological consequences of
553 redox-dependent signalling. *Nat. Rev. Mol. Cell. Biol.* 15(6), 411-421.

554 Hau, M., Haussmann, M., Greives, T., Matlack, C., Costantini, D., Quetting, M., Adelman, J.,
555 Miranda, A., Partecke, J., 2015. Repeated stressors in adulthood increase the rate of
556 biological ageing. *Frontiers in Zoology* 12, 4.

557 Hedges, L., Olkin, I. 1985. Statistical Methods for Meta-Analysis. Academic Press, New
558 York, NY.

559 Herborn, K.A., Daunt, F., Heidinger, B.J., Granroth-Wilding, H.M.V., Burthe, S.J., Newell,
560 M.A., Monaghan, P., 2015. Age, oxidative stress exposure and fitness in a long-lived
561 seabird. *Funct. Ecol.* 30 (6), 913-921.

562 Jacob, K.D., Hooten, N.N., Trzeciak, A.R., Evans, M.K., 2013. Markers of Oxidant Stress
563 that are Clinically Relevant in Aging and Age-related Disease. *Mech. Ageing Dev.*
564 134, 139-157.

565 Kelly, C. Price, D., 2005. Correcting for regression to the mean in behavior and ecology. *The*
566 *American Naturalist* 166 (6), 000-000.

567 Løhr, M., Jensen, A., Eriksen, L., Grønbæk, M., Loft, S., Møller, P., 2015. Association
568 between age and repair of oxidatively damaged DNA in human peripheral blood
569 mononuclear cells. *Mutagenesis* 30, 695-700.

570 Møller, P., Løhr, M., Folkmann, J.K., Mikkelsen, L., Loft, S., 2010. Aging and oxidatively
571 damaged nuclear DNA in animal organs. *Free Radical Biology and Medicine* 48,
572 1275-1285.

573 Marasco, V., Spencer, K.A.S., Robinson, J., Herzyk, P., Costantini, D., 2013. Developmental
574 post-natal stress can alter the effects of pre-natal stress on the adult redox balance.
575 *Gen. Comp. Endocrinol.* 191, 239-246.

576 Marasco, V., Boner, W., Heidinger, B., Griffiths, K., Monaghan, P., 2015. Repeated exposure
577 to stressful conditions can have beneficial effects on survival. *Experimental*
578 *Gerontology* 69, 170-175.

579 Martindale, J.L., Holbrook, N.J., 2002. Cellular response to oxidative stress: Signaling for
580 suicide and survival. *J. Cell. Physiol.* 192, 1-15.

581 Matsuo, M., Gomi, F., Kuramoto, K., Sagai, M., 1993. Food Restriction Suppresses an Age-
582 Dependent Increase in the Exhalation Rate of Pentane From Rats: A Longitudinal
583 Study. *Journal of Gerontology* 48, B133-B138.

584 Monaghan, P., Metcalfe, N.B., Torres, R., 2009. Oxidative stress as a mediator of life history
585 trade-offs: mechanisms, measurements and interpretation. *Ecol. Lett.* 12, 75-92.

586 Monaghan, P., Heidinger, B.J., D'Alba, L., Evans, N.P., Spencer, K.A., 2012. For better or
587 worse: reduced adult lifespan following early-life stress is transmitted to breeding
588 partners. *Proceedings of the Royal Society B: Biological Sciences* 279, 709-714.

589 Nakagawa, S., Cuthill, I.C. 2007. Effect size, confidence interval and statistical significance:
590 a practical guide for biologists. *Biol. Rev.* 82, 591-605.

591 Noguera, J.C., Kim, S.Y., Velando, A., 2012. Pre-fledgling oxidative damage predicts
592 recruitment in a long-lived bird. *Biology Letters* 8, 61-63.

593 Nussey, D.H., Coulson, T., Festa-Bianchet, M., Gaillard, J.M., 2008. Measuring senescence
594 in wild animal populations: towards a longitudinal approach. *Funct. Ecol.* 22, 393-
595 406.

596 Palleschi, S., De Angelis, S., Diana, L., Rossi, B., Papa, V., Severini, G., Splendiani, G.,
597 2007. Reliability of oxidative stress biomarkers in hemodialysis patients: a
598 comparative study. *Clinical Chemistry and Laboratory Medicine* 45, 1211-1218.

599 Pereira, B.C., Pauli, J.R., Antunes, L.M., de Freitas, E.C., de Almeida, M.R., de Paula V.,
600 Ropelle, E.R., de Souza, C.T., Cintra, D.E., Papoti, M., da Silva, A.S. 2013.
601 Overtraining is associated with DNA damage in blood and skeletal muscle cells of
602 Swiss mice. *BMC physiol.* 13, 11.

603 Salmon, A.B., Richardson, A., Pérez, V.I., 2010. Update on the oxidative stress theory of
604 aging: Does oxidative stress play a role in aging or healthy aging? *Free Radical*
605 *Biology and Medicine* 48, 642-655.

606 Sapolsky, R.M., 2015. Stress and the brain: individual variability and the inverted-U. *Nat.*
607 *Neurosci.* 18, 1344-1346.

608 Selman, C., Blount, J.D., Nussey, D.H., Speakman, J.R., 2012. Oxidative damage, ageing,
609 and life-history evolution: where now? *Trends in Ecology & Evolution* 27, 570-577.

610 Soares, J.P., Silva, A.I.M., Fonseca, S., Oliveira, M.M., Peixoto, F., Gaivão, I., Mota, M.P.,
611 2015. How can age and lifestyle variables affect DNA damage, repair capacity and
612 endogenous biomarkers of oxidative stress? *Experimental Gerontology* 62, 45-52.

613 Sohal, R.S., Ku, H.H., Agarwal, S., Forster, M.J., Lal, H., 1994. Oxidative damage,
614 mitochondrial oxidant generation and antioxidant defenses during aging and in response
615 to food restriction in the mouse. *Mech. Ageing Dev.* 74, 121-133.

616 Sohal, R.S., Agarwal, S., Sohal, B.H., 1995. Oxidative stress and aging in the Mongolian
617 gerbil (*Meriones unguiculatus*). *Mech. Ageing Dev.* 81, 15-25.

618 Speakman, J.R., Garratt, M., 2014. Oxidative stress as a cost of reproduction: Beyond the
619 simplistic trade-off model. *BioEssays* 36, 93-106.

620 Speakman, J.R., Blount, J.D., Bronikowski, A.M., Buffenstein, R., Isaksson, C., Kirkwood,
621 T.B.L., Monaghan, P., Ozanne, S.E., Beaulieu, M.I., Briga, M., Carr, S.K.,
622 Christensen, L.L., Cochemé, H.M., Cram, D.L., Dantzer, B., Harper, J.M., Jurk, D.,
623 King, A., Noguera, J.C., Salin, K., Sild, E., Simons, M.J.P., Smith, S., Stier, A.,
624 Tobler, M., Vitikainen, E., Peaker, M., Selman, C., 2015. Oxidative stress and life
625 histories: unresolved issues and current needs. *Ecol. Evol.* 5, 5745-5757.

626 Stier, A., Bize, P., Habold, C., Bouillaud, F., Massemin, S., and Criscuolo, F. 2014a.
627 Mitochondrial uncoupling prevents cold-induced oxidative stress: a case study using
628 UCP1 knockout mice. *J. Exp. Biol.* 217, 624-630.

629 Stier, A., Massemin, S., Criscuolo, F., 2014b. Chronic mitochondrial uncoupling treatment
630 prevents acute cold-induced oxidative stress in birds. *J. Comp. Physiol. B.* 184, 1021-
631 1029.

632 Stier, A., Viblanc, V.A., Massemin-Challet, S., Handrich, Y., Zahn, S., Rojas, E.R., Saraux,
633 C., Le Vaillant, M., Prud'homme, O.s., Grosbellet, E., Robin, J.P., Bize, P., Criscuolo,
634 F., 2014c. Starting with a handicap: phenotypic differences between early- and late-
635 born king penguin chicks and their survival correlates. *Funct. Ecol.* 28, 601-611.

636 Stier, A., Reichert, S., Criscuolo, F., Bize, P., 2015. Red blood cells open promising avenues
637 for longitudinal studies of ageing in laboratory, non-model and wild animals. *Exp.*
638 *Geront.* 71, 118-134.

639 Veskoukis, A.S., Nikolaidis, M.G., Kyparos, A., Kouretas, D. 2009. Blood reflects tissue
640 oxidative stress depending on biomarker and tissue studied. *Free Radical Biology and*
641 *Medicine* 47, 1371-1374.

642 Wingfield, J.C., Kitaysky, A.S., 2002. Endocrine responses to unpredictable environmental
643 events: stress or anti-stress hormones? *Integr. Comp. Biol.* 42, 600-609.

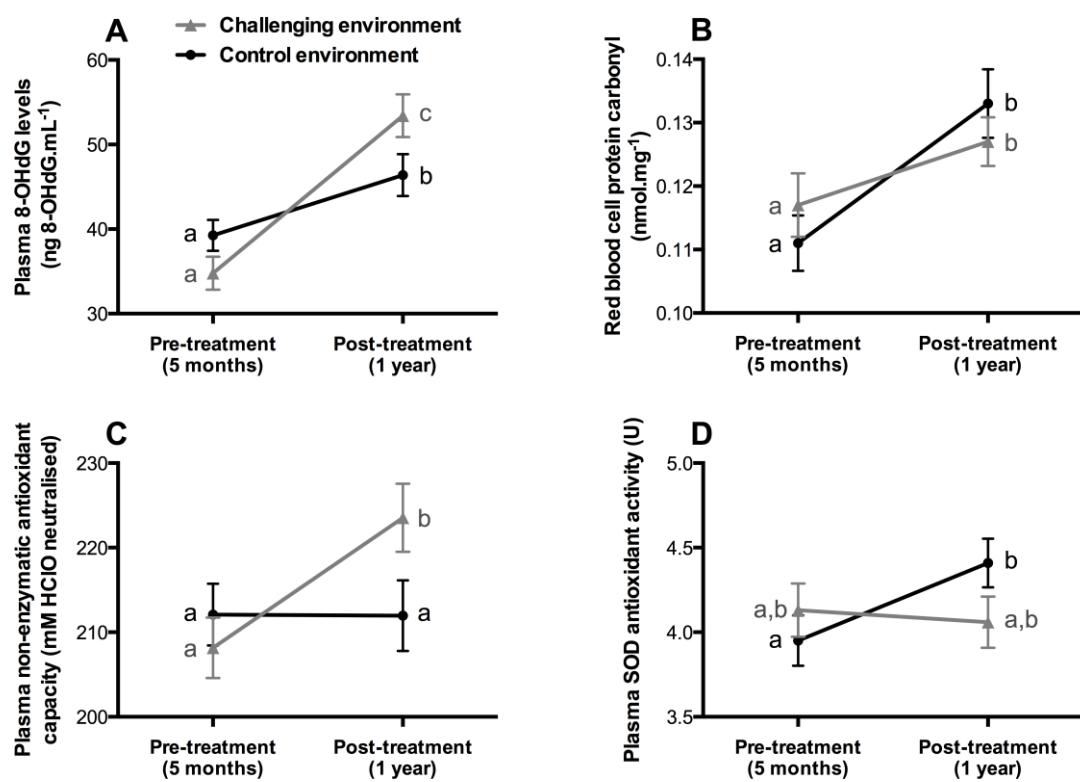
644 Zann, R.A. 1996. The Zebra Finch. A synthesis of field and laboratory studies. Oxford
645 University Press, Oxford.

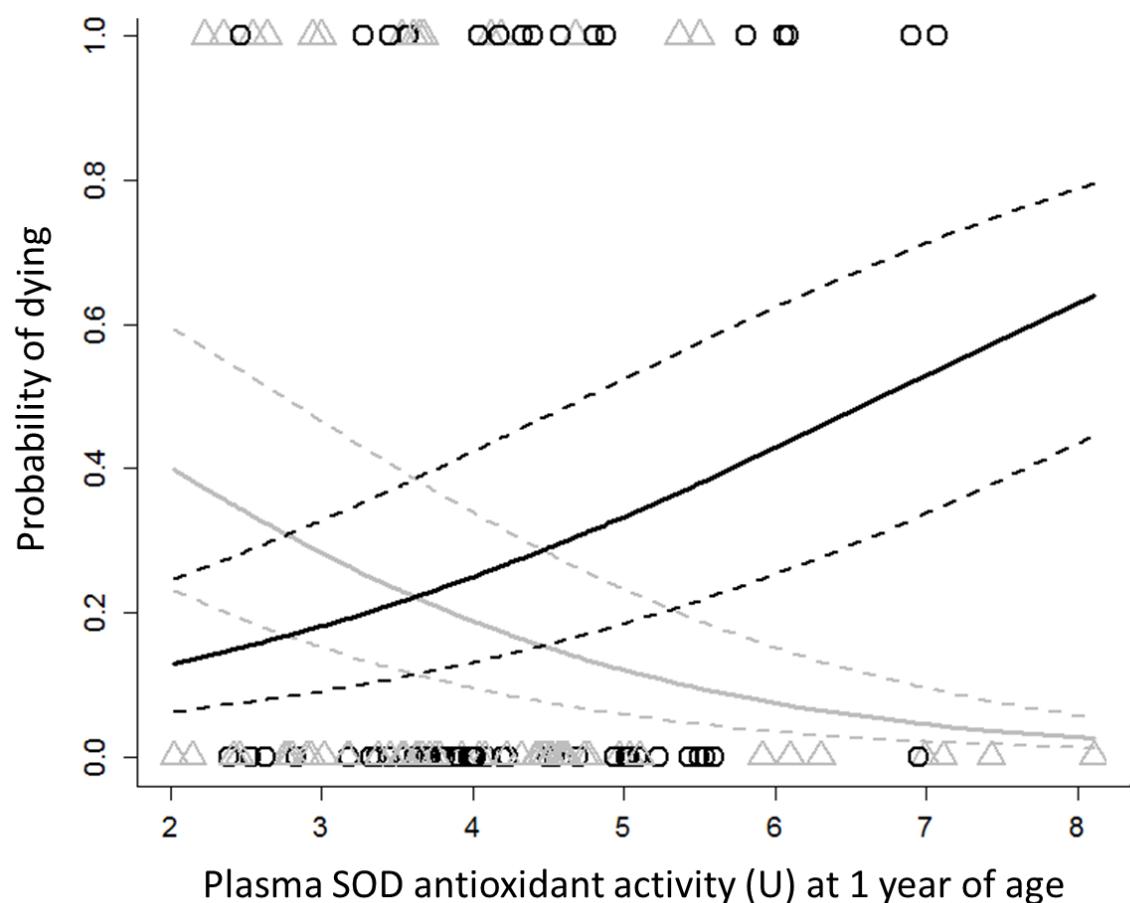
646 Zelko, I.N., Mariani, T.J., Folz, R.J., 2002. Superoxide dismutase multigene family: a
647 comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene
648 structures, evolution, and expression. *Free Radical Biology and Medicine* 33, 337-
649 349.

650 Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M, 2009. Mixed effects
651 models and extension in Ecology with R. Springer, New York, USA.

652

653 **Figure captions**

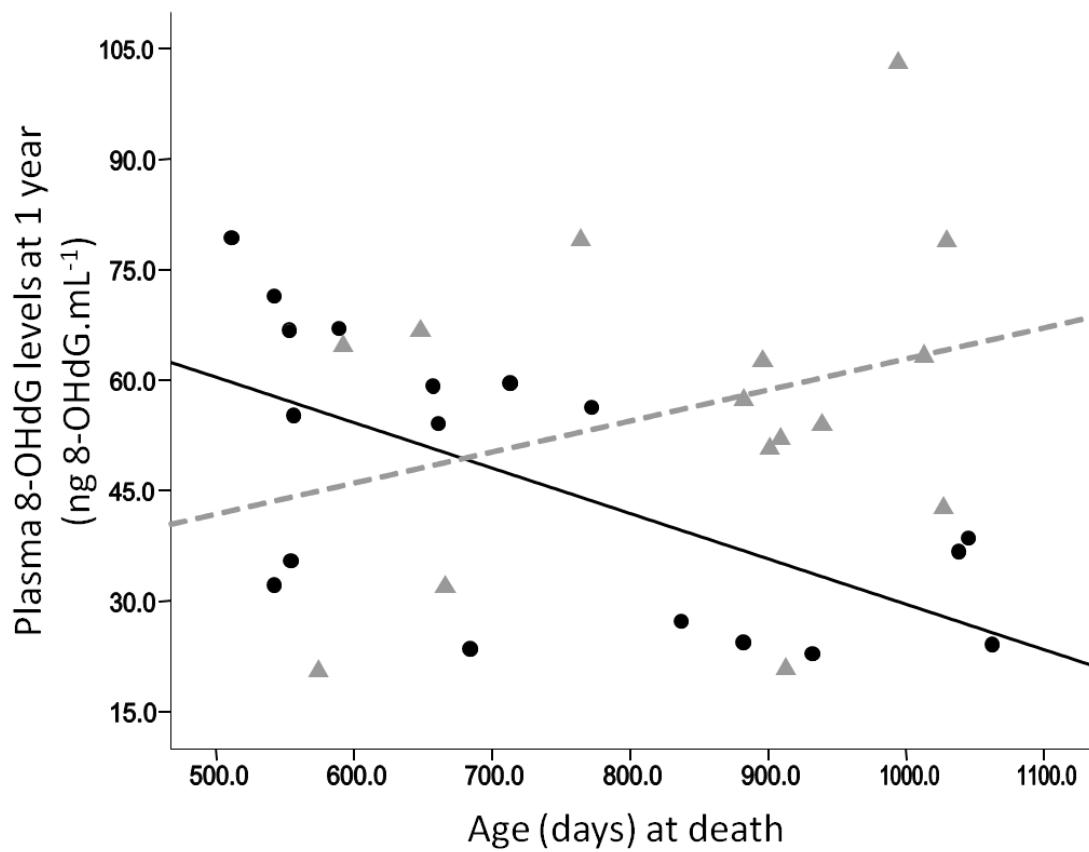

654 **Figure 1.** Effects of age and treatment on four oxidative stress markers in adult zebra finch
655 females: (a) plasma levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), (b) protein carbonyl
656 (PC) levels in red blood cells, (c) plasma non-enzymatic antioxidant capacity (OXY) and (d)
657 plasma superoxide dismutase (SOD). Control environment is shown in black and challenging
658 environment in grey. Means are reported \pm SEM and different letters indicate significant
659 differences, i.e. $p \leq 0.05$ (see text and Table S2 for details about statistics).


660

661 **Figure 2.** Estimated probabilities of mortality in relation to plasma levels of superoxide
662 dismutase (SOD) at 1 year of age in the control (black line) and in the challenging (grey line)
663 environment; dashed lines in black or grey, respectively for control or challenging
664 environment, represents 95% confidence intervals obtained by adding or subtracting variance
665 of the random factor family id to the predictor function. Observed individual values (0 alive
666 /1 dead) are represented by black circles for control and grey triangles for challenging
667 environment. Elevated SOD activity was associated with higher mortality rates in the control
668 females whereas the opposite trend was observed in the birds exposed to the challenging
669 environmental conditions (treatment x SOD, $p = 0.03$).

670

671 **Figure 3.** Relationship between age of death and plasma levels of 8-hydroxy-2'-
672 deoxyguanosine (8-OHdG) measured at 1 year of age. Graphical representation of the
673 significant interaction ($p = 0.004$) between treatment (black: control environment; grey:
674 challenging environment) and 8-OHdG in predicting age of death. The interaction is driven
675 by a significant negative correlation between age of death and 8-OHdG in the control
676 environment ($r = -0.628$, $p = 0.005$), whilst no significant correlation was found in the
677 challenging environment ($r = 0.303$, $p = 0.272$).


680 **Figure 1.**

681

682 **Figure 2.**

683

684

685 **Figure 3.**

686

687 **Supplementary Material**

688 **Environmental conditions can modulate the links among oxidative stress, age, and**
689 **longevity**

690

691 Valeria Marasco^{*1}, Antoine Stier*, Winnie Boner, Kate Griffiths, Britt Heidinger², and Pat
692 Monaghan

693 Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building,
694 University of Glasgow, Glasgow, G12 8QQ, UK.

695 Current addresses:

696 ¹Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology,
697 Vetmeduni Vienna, Savoyenstraße 1a, A-1160, Vienna, Austria.

698 ²Biological Sciences Department, Stevens Hall, North Dakota State University, Fargo, ND
699 58108, USA.

700 * Joint first authors

701 Corresponding author: Pat.Monaghan@glasgow.ac.uk

702

703
704
705
706
707
708
709

Table S1. Sample sizes for each oxidative stress marker measurements at 5 months and/or 1 year of age in zebra finch females living in the control or challenging environment (total sample size: 65 birds in control and 75 birds in challenging environment). Delta denotes the number of birds, separately by treatment groups, for which we had both the 5 months and 1 year marker measurements.

8-hydroxy-2'-deoxyguanosine (8-OHdG)

Age	Control	Challenging
5 months	n = 55	n = 56
1 year	n = 64	n = 71
Delta	n = 54	n = 53

Protein carbonyls (PC)

Age	Control	Challenging
5 months	n = 47	n = 46
1 year	n = 57	n = 65
Delta	n = 42	n = 40

Non-enzymatic antioxidant capacity (OXY)

Age	Control	Challenging
5 months	n = 55	n = 55
1 year	n = 64	n = 71
Delta	n = 54	n = 52

Superoxide dismutase (SOD)

Age	Control	Challenging
5 months	n = 54	n = 55
1 year	n = 63	n = 70
Delta	n = 53	n = 51

710
711

712
 713 **Table S2.** Results of repeated linear mixed models testing the effects of time and treatment
 714 (control vs. challenging environment) on four oxidative stress markers: (a) plasma levels of 8-
 715 hydroxy-2'-deoxyguanosine (8-OHdG), (b) protein carbonyl levels in red blood cells, (c)
 716 plasma non-enzymatic antioxidant capacity and (d) plasma superoxide dismutase activity.
 717 Estimates are reported for age = 5 months and treatment = control; significant effects are
 718 highlighted in bold ($p \leq 0.05$). Estimates are also reported for repeated and random effects.
 719 Non-significant terms (*ns*) have been removed from the final models. Details on significant
 720 interactions (models split by age and by treatment) are given below the table.
 721

(a) 8-OHdG		Estimate \pm SE	df	F	p-value
Repeated effect	Bird ID	194.48 \pm 34.69			
Random effect	Bird family	4.03 \pm 18.46			
Fixed effects & covariates	Constant	53.43 \pm 3.17	1, 0.16	355.4	< 0.001
	Age	-18.62 \pm 3.07	1, 183.5	33.8	< 0.001
	Treatment	-7.08 \pm 3.55	1, 234.0	0.4	0.55
	Age*Treatment	11.51 \pm 4.43	1, 185.1	6.7	0.010^a
	Body mass				<i>ns</i>
(b) Protein Carbonyls (PC)		Estimate \pm SE	df	F	p-value

Repeated effect	Bird ID	0.0009 ± 0.0002				
Random effect	Bird family	0.00014 ± 0.00009				
Fixed effects & covariates	Constant	0.13 ± 0.01	1, 6.0	98.1	< 0.001	
	Age	-.016 ± 0.004	1, 162.8	13.6	< 0.001	
	Treatment					<i>ns</i>
	Age*Treatment					<i>ns</i>
	Body mass					<i>ns</i>
(c) Non-enzymatic antioxidant capacity (OXY)		Estimate ± SE	df	F	p-value	
Repeated effect	Bird ID	665.46 ± 111.76				
Random effect	Bird family	50.25 ± 61.64				
Fixed effects & covariates	Constant	223.62 ± 8.15	1, 1.5	840.2	< 0.001	
	Age	-15.30 ± 5.26	1, 176.7	4.0	0.047	
	Treatment	-11.60 ± 5.75	1, 240.2	1.0	0.32	

	Age*Treatment	15.47 ± 7.55	1, 178.1	4.2	0.042^b
	Body mass				<i>ns</i>
(d) Superoxide dismutase (SOD)					
Repeated effect	Bird ID	1.15 ± 0.17			
Random effect	Bird family	0.25 ± 0.16			
Fixed effects & covariates	Constant	4.03 ± 0.52	1, 5.0	66.0	< 0.001
	Age	0.10 ± 0.16	1, 114.7	2.2	0.14
	Treatment	0.39 ± 0.19	1, 89.9	0.6	0.44
	Age*Treatment	-0.53 ± 0.22	1, 114.5	5.5	0.020^c
	Body mass				<i>ns</i>

722 ^a 8-OHdG increased with age in both groups (control: $F = 6.0$, $p = 0.017$; challenging: $F =$
 723 35.3 , $p < 0.001$), but the increase was greater in the birds living in the challenging
 724 environment; thus, while the birds living in the challenging environment did not significantly
 725 differ from those in the control treatment prior to the start of the experiment ($F = 2.6$, $p =$
 726 0.11), they ended up with higher 8-OHdG levels at 1 year of age ($F = 3.9$, $p = 0.050$).

727 ^b There was no significant difference before the start of the experiment ($F = 0.51$, $p = 0.48$),
 728 but birds in the challenging environment ended up with significantly higher OXY levels ($F =$
 729 4.1 , $p = 0.048$). This is because OXY significantly increased in the challenging environment
 730 ($F = 11.4$, $p = 0.001$), but not in the control environment ($F = 0.1$, $p = 0.98$).

731 ^c For SOD, birds in the challenging environment did not differ significantly from the controls
 732 prior to the start of the experiment ($F = 0.1$, $p = 0.85$) or at 1 year ($F = 2.7$, $p = 0.10$). Still,
 733 SOD activity increased with age in the control ($F = 7.2$, $p = 0.009$), but not in the challenging
 This article is protected by copyright. All rights reserved.

734 environment (F = 0.4, p = 0.54).

735

736 **Table S3.** Results of Generalized Linear/Mixed models (GLM/GLMMs) performed to test if
 737 variation in oxidative stress markers ((a) plasma levels of 8-hydroxy-2'-deoxyguanosine; (b)
 738 protein carbonyl levels in red blood cells; (c) plasma non-enzymatic antioxidant capacity, and
 739 (d) plasma superoxide dismutase activity)) measured after ~7 months of the treatment (i.e. 1
 740 year of age) predicted survival in the next consecutive two years in interaction with the
 741 treatment. A GLM instead of GLMM was performed for the OXY statistics because the
 742 model with the random factor did not converge; analysis for all the other markers included
 743 family id as random factor. Estimates are reported for treatment = control (response variable
 744 reference category = 0 (alive)); significant effects based on the Wald Z-statistic are
 745 highlighted in bold ($p \leq 0.05$). Non-significant interaction terms (*ns*) were removed from the
 746 final models. Sample size in each model is indicated below in brackets.

747

748 **(a) 8-hydroxy-2'-deoxyguanosine (8-OHdG) (n = 131)**

Factor	Estimate \pm SE	z-value	p-value
Intercept	-1.511 \pm 0.658	-2.297	0.022
Treatment	0.474 \pm 0.431	1.099	0.272
8-OHdG	0.002 \pm 0.010	0.222	0.825
Treatment X 8-OHdG			<i>ns</i>

749 Family id - estimate \pm SD: 0.267 \pm 0.517

750 **(b) Protein Carbonyls (PC) (n = 119)**

Factor	Estimate \pm SE	z-value	p-value
Intercept	-2.347 \pm 0.889	-2.641	0.008

Treatment 0.434 ± 0.443 0.978 0.328

PC 7.782 ± 5.961 1.321 0.187

Treatment X PC *ns*

751 Family id - estimate \pm SD: 0.199 ± 0.446

752 **(c) Non-enzymatic antioxidant capacity (OXY) (n = 131)**

Factor	Estimate \pm SE	z-value	p-value
Intercept	-0.544 ± 1.367	-0.398	0.690
Treatment	0.389 ± 0.411	0.948	0.343
OXY	-0.003 ± 0.006	-0.563	0.574

Treatment X OXY *ns*

753 **(d) Superoxide dismutase (SOD) (n = 129)**

Factor	Estimate \pm SE	z-value	p-value
Intercept	0.657 ± 1.209	0.544	0.587
Treatment	-3.385 ± 1.795	-1.886	0.059
SOD	-0.529 ± 0.322	-1.642	0.101
Treatment X SOD	0.935 ± 0.431	2.172	0.030

754 Family id - estimate \pm SD: 0.404 ± 0.635

755

756

757
758 **Table S4.** Results of General Linear Models (GLMs) performed to test if variation in the
759 oxidative stress markers ((a) plasma levels of 8-hydroxy-2'-deoxyguanosine; (b) protein
760 carbonyl levels in red blood cells; (c) plasma non-enzymatic antioxidant capacity, and (d)
761 plasma superoxide dismutase activity)) measured at 1 year of age contributed to explain
762 differences in the age of death, in interaction with the treatment. Estimates are reported for
763 treatment = control; significant effects are highlighted in bold ($p \leq 0.05$). Non-significant
764 interaction terms (ns) were removed from the final models. Differences in degrees of freedom
765 among models are due to missing oxidative stress marker measurements (sample size in each
766 model is indicated below in brackets).

767

768 **(a) 8-hydroxy-2'-deoxyguanosine (8-OHdG) (n = 33)**

Factor	Estimate \pm SE	d, f	F	p-value
Intercept	726.168 \pm 113.566	1,29	134.224	<0.0001
Treatment	300.000 \pm 151.252	1,29	3.934	0.057
8-OHdG	2.188 \pm 1.879	1,29	2.352	0.136
Treatment X 8-OHdG	-8.590 \pm 2.748	1,29	9.770	0.004

769

770 **(b) Protein Carbonyls (PC) (n = 31)**

Factor	Estimate \pm SE	d, f	F	p-value
Intercept	718.110 \pm 100.472	1,28	43.890	<0.0001
Treatment	-154.716 \pm 61.343	1,28	6.361	0.018

PC 1112.861 ± 664.798 1,28 2.802 0.105

Treatment X PC *ns*

771 (c) Non-enzymatic antioxidant capacity (OXY) (n = 33)

Factor	Estimate \pm SE	d, f	F	p-value
Intercept	770.874 ± 234.622	1,30	10.191	0.003
Treatment	-114.428 ± 65.435	1,30	3.058	0.091
OXY	0.353 ± 1.029	1,30	0.118	0.734

Treatment X OXY *ns*

772 (d) Superoxide dismutase (SOD) (n = 33)

Factor	Estimate \pm SE	d, f	F	p-value
Intercept	791.876 ± 109.839	1,30	37.064	<0.0001
Treatment	-137.790 ± 69.657	1,30	3.913	0.057
SOD	16.077 ± 27.626	1,30	0.339	0.565

Treatment X SOD *ns*

773

774

775

776 **Survival/lifespan analyses using the delta oxidative stress markers (i.e. within-individual**
777 **change between 5 months and 1 year)**

778

779 The age-related variation in oxidative stress might be more important in predicting
780 survival/age of death than the actual level measured at one year of age. Consequently, we
781 also tested the use of within-individual change between the pre-treatment sampling at 5
782 months and the post-treatment sampling at 1 year of age corrected for the regression to the
783 mean (i.e. delta marker index; see Kelly and Price, 2005) instead of the 1 year value as being
784 presented in the main text. The use of the delta marker index rather than the simple within-
785 individual change between the pre-treatment (5 months) and post-treatment (1 year) marker
786 measurements in the models allowed us to correct for the regression to the mean effect. In
787 fact, while there was a significant correlation between the marker levels measured at 5
788 months and the change between 5 months and 1 year ($-0.66 < \text{Pearson } r < -0.46$; $p < 0.0001$
789 for all markers), such correlation disappeared when using the delta marker index ($0.001 <$
790 $\text{Pearson } r < 0.04$; $0.73 < p < 0.1$), suggesting that the former correlations could potentially
791 arise from statistical artefacts (Kelly and Price, 2005). We calculated the delta marker index
792 so that a more positive number indicates greater increase with age.

793

794

795

796

797 **Table S5.** Results of Generalized Linear models (GLMs) performed to test if the change in
 798 oxidative stress markers between 5 months and 1 year corrected for the regression to the
 799 mean ((a) delta index plasma levels of 8-hydroxy-2'-deoxyguanosine; (b) delta index protein
 800 carbonyl levels in red blood cells; (c) delta index plasma non-enzymatic antioxidant capacity,
 801 and (d) delta index plasma superoxide dismutase activity)) predicted survival in the next
 802 consecutive two years in interaction with the treatment. Estimates are reported for treatment =
 803 control (response variable reference category = 0 (alive)); significant effects based on the
 804 Wald Z-statistic are highlighted in bold ($p \leq 0.05$). Non-significant interaction terms (*ns*)
 805 were removed from the final models. Sample size in each model is indicated below in
 806 brackets. GLMs instead of GLMMs were used because the variance explained by the random
 807 factor family identity was very low (<0.001) or estimated at 0 with minimal influence on
 808 parameter estimates and model fit.

809

810 **(a) Delta index 8-OHdG (delta 8-OhdG index) (n = 104)**

Factor	Estimate \pm SE	z-value	p-value
Intercept	-1.190 \pm 0.331	-3.599	0.0003
Treatment	0.151 \pm 0.468	0.322	0.747
delta 8-OHdG index	-0.012 \pm 0.012	-0.958	0.338
Treatment X delta 8-OHdG index			<i>ns</i>

811 **(b) Delta index Protein Carbonyls (delta PC index) (n = 81)**

Factor	Estimate \pm SE	z-value	p-value
Intercept	-1.082 \pm 0.371	-2.914	0.004

Treatment	0.227 ± 0.510	0.446	0.656
delta PC index	13.464 ± 7.189	1.873	0.061
Treatment X delta PC index			<i>ns</i>

812 (c) Delta index non-enzymatic antioxidant capacity (delta OXY index) (n = 103)

Factor	Estimate \pm SE	z-value	p-value
Intercept	-1.173 ± 0.331	-3.540	<0.0001
Treatment	0.157 ± 0.468	0.335	0.737
delta OXY index	-0.005 ± 0.007	-0.720	0.472
Treatment X delta OXY index			<i>ns</i>

813 (d) Delta index Superoxide dismutase (delta SOD index) (n = 102)

Factor	Estimate \pm SE	z-value	p-value
Intercept	-1.705 ± 0.467	-3.649	0.0003
Treatment	0.672 ± 0.572	1.175	0.240
delta SOD index	-0.895 ± 0.448	-1.996	0.046
Treatment X delta SOD index	1.134 ± 0.549	2.067	0.039

814

815

816
 817 **Table S6.** Results of General Linear Model (GLM) performed to test if the change in
 818 oxidative stress markers between 5 months and 1 year corrected for the regression to the
 819 mean ((a) delta index of plasma levels of 8-hydroxy-2'-deoxyguanosine; (b) delta index of
 820 red blood cells levels of protein carbonyl; (c) delta index of plasma non-enzymatic
 821 antioxidant capacity, and (d) delta index of plasma superoxide dismutase activity))
 822 contributed to explain differences in the age of death, in interaction with the treatment.
 823 Estimates are reported for treatment = control; significant effects are highlighted in bold ($p \leq$
 824 0.05). Non-significant interaction terms (*ns*) were removed from the final models.
 825 Differences in degrees of freedom among models are due to missing oxidative stress delta
 826 values (sample size in each model is indicated below in brackets).

827

828 **(a) Delta 8-hydroxy-2'-deoxyguanosine index (delta 8-OhdG index) (n = 26)**

Factor	Estimate \pm SE	d, f	F	p-value
Intercept	827.587 \pm 53.129	1,23	462.155	<0.0001
Treatment	-89.630 \pm 77.738	1,23	1.329	0.261
delta 8-OHdG index	-2.712 \pm 2.263	1,23	1.435	0.243
Treatment X delta 8-OHdG index				<i>ns</i> (0.06)

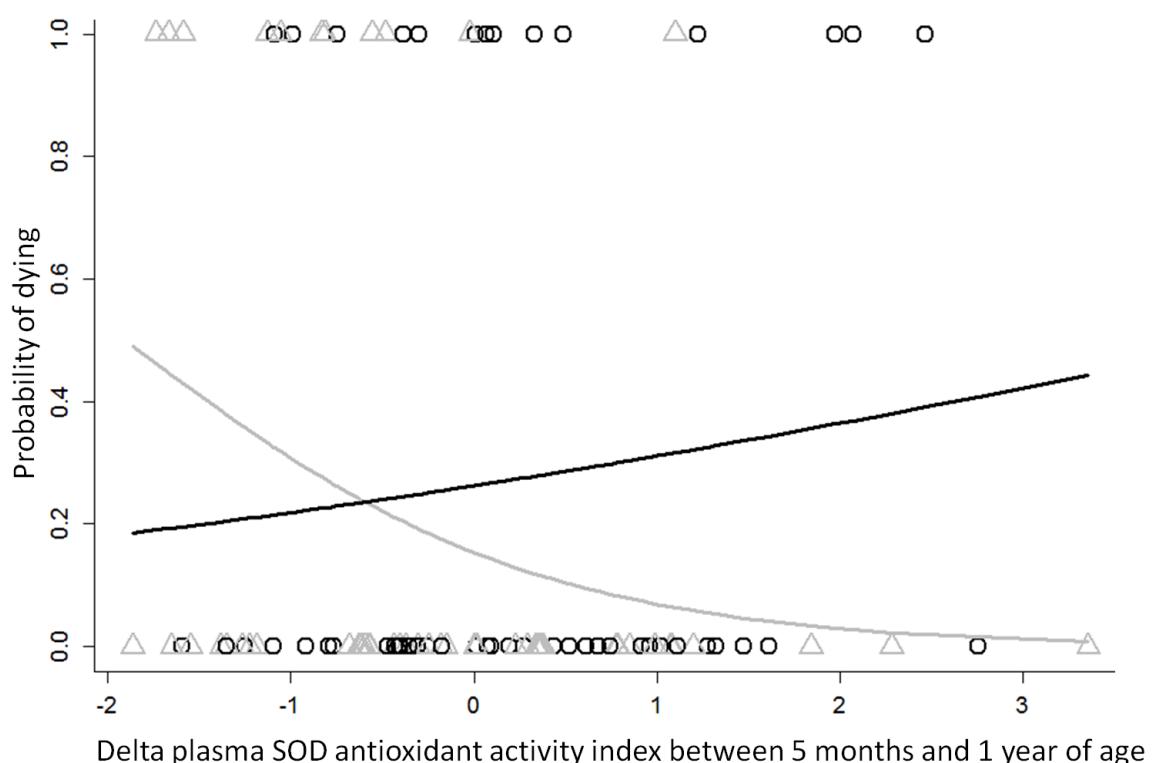
829 **(b) Delta Protein Carbonyls index (delta PC index) (n = 23)**

Factor	Estimate \pm SE	d, f	F	p-value
Intercept	829.545 \pm 60.040	1,20	356.436	<0.0001
Treatment	-108.036 \pm 81.259	1,20	1.768	0.199

delta PC index 1102.193 ± 843.022 1,20 1.709 0.206

Treatment X delta PC index *ns*

830 **(c) Delta non-enzymatic antioxidant capacity index (delta OXY index) (n = 26)**


Factor	Estimate \pm SE	d, f	F	p-value
Intercept	810.684 ± 53.867	1,23	472.535	<0.0001
Treatment	-31.578 ± 76.856	1,23	0.169	0.685
delta OXY index	0.937 ± 1.102	1,23	0.722	0.404
Treatment X delta OXY index				<i>ns</i>

831 **(d) Delta superoxide dismutase index (delta SOD index) (n = 25)**

Factor	Estimate \pm SE	d, f	F	p-value
Intercept	859.321 ± 62.387	1,22	463.718	<0.0001
Treatment	-104.008 ± 85.315	1,22	1.486	0.236
delta SOD index	24.528 ± 37.205	1,22	0.435	0.517
Treatment X delta SOD index				<i>ns</i>

832

833

Figure S1. Estimated probabilities of mortality in relation to the within-individual change in plasma levels of superoxide dismutase activity corrected for the regression to the mean (i.e. delta SOD index) in the control environment (black line) and in the challenging environment (grey line). Observed individual values (0 alive /1 dead) are represented by black circles for control and grey triangles for challenging environment. Females in the challenging environment (but not control females) showed reduced mortality rates with higher increases in SOD activity between 5 months and 1 year of age (interaction treatment x SOD, $p = 0.04$).